DATA SCIENCE & GENERATIVE AI (Batch 1)

USD 300.00 USD 225.00

25% Discount

NISHANT SIDANA

Course Language: EN (English)

This course includes:

51h 0m live online session

Certificate of completion

Level:
Beginner
Target Audience:
  • Engineering, MBA, Economics, Any Graduate
Course objective:
  • Upskill participants with latest data science skills which will make them industry ready & help them with Data Science & AI roles in industry.
Course prerequisites:
  • A laptop with 64GB RAM
Video Recording Available:
  •  No

Description :

Module 1: Python Basics: It will help learn the tool, Python to be used for working with data
 
Module 2: Python NUMPY Library: It is used to perform a wide variety of mathematical operations on arrays
 
Module 3: Python PANDAS Library: It is used for data manipulation, data cleaning, data analysis
 
Module 4: Python MATPLOTLIB Library: Data Visualization part 1
 
Module 5: Python SEABORN Library: Data Visualization part 2
 
Module 6: Basic Statistics: For business analysis
 
Module 7: Advance Statistics: For business analysis
 
Module 8: Machine Learning
 
Module 9: Supervised Machine Learning: Linear Regression (Solve business problems where we have to predict a value)
 
Module 10: Supervised Machine Learning: Logistic Regression (Used for binary classification business problems)
 
Module 11: Supervised Machine Learning: Decision Tress (Used for multi-class classification business problems & regression business problems)
 
Module 12: Supervised Machine Learning: Ensemble (Used for multi-class classification business problems & regression business problems)
 
Module 13: Supervised Machine Learning: KNN (Used for multi-class classification business problems & regression business problems)
 
Module 14: Unsupervised Machine Learning: Clustering (Used for segmenting data points into different groups)
 
Module 15: Unsupervised Machine Learning: PCA (Used for segmenting data points into different groups)
 
Module 16: Unsupervised Machine Learning: Isolation Forest (Used for anomaly detection business problems)
 
Module 17: Time Series Forecasting: Used for inventory planning or forecasting business problems
 
Module 18: Text Analytics: Used for text mining business problems working with unstructured data
 
Module 19: AI: Deep Learning, Keras
 
Module 20: Model Deployment: Using model for predicting output on new input values
 
Module 21: Power BI: Data Visualization
 
Module 22: Generative AI
 
Module 23: Project

John Doe

NISHANT SIDANA

Click for more
India

Senior Manager-Data Science, Freelance Data Science Trainer (R,SAS,PYTHON,ML,NLP,AI)(3000+ individuals), Mentor

Click for more

Average Rating :

  • 5
    0
  • 4
    0
  • 3
    0
  • 2
    0
  • 1
    0

0

0 Rating

0 Review

Course Content : Expand all sections

  • 43 lectures
  • 51h 0m total length
- Introduction to Python
- OOP: Object & Class
- Serialization: Pickle Library
- Variables
- Lists
- Tuples
- Dictionary
- Sets
- List & Dictionary Comprehensions
- Conditional Statements (If, If-else, elif)
- Loops (For, While)
- Functions
- Lambda Function
- Apply Function
 
Class Exercise
- Array Characteristics
- Array Creation (arrange, linspace, flatten)
- Array Indexing (Slicing)
- Array Manipulation
- Reshape
- Concatenate
- Append
- Insert
- Delete
- Transpose
 
Class Exercises
- Series
- Data Frames
- Reading CSV File
- Sub Setting / Filtering / Slicing Data
- Dropping rows & columns
- Adding / deleting columns
- Binning
- Renaming rows & columns
- Sorting
- Data type conversions
- Handling duplicates / missing
- Broadcasting
- Group by Function
- Map Function
- Visualization (bar graph, histogram, box plot)
- Merging (Inner, Left, Right, Outer)
- EDA
 
Class Exercises
- Series
- Data Frames
- Reading CSV File
- Sub Setting / Filtering / Slicing Data
- Dropping rows & columns
- Adding / deleting columns
- Binning
- Renaming rows & columns
- Sorting
- Data type conversions
- Handling duplicates / missing
- Broadcasting
- Group by Function
- Map Function
- Visualization (bar graph, histogram, box plot)
- Merging (Inner, Left, Right, Outer)
- EDA
 
Class Exercises
- Bar Plot
- Stacked Bar Plot
- Histogram
- Line Chart
- Box Plot
- Pie Chart
- Pairwise Plots: Joint Plot, Pair Plot
- Categorical Scatter Plot: Strip Plot, Swarm Plot
- Violin Plot
- Cat Plot
- Facet Grid
- Pair Grid
- Line Plot
 
Class Exercises
- Type of data
- Statistics
- Type of Statistics
- Descriptive Statistics
- Mean, Median, Mode (Measure of Central Tendency)
- Standard Deviation, Variance (Measure of Dispersion)
- Normal Distribution
- Standard Normal Distribution
- Standard Error
- Sampling
- Probability
 
Class Exercises
- Confidence Interval
- T-Test & Z-Test
- P-Value
- Hypothesis Testing
- Type I and Type II Errors
- Chi-Square Test
- ANOVA
- Covariance
- Correlation
 
Class Exercises
- Introduction
- Assumptions (Linearity, Heteroskedasticity, Multivariate Normality, etc.)
- Data Preparation (Outlier Treatment, Missing Value Imputation)
- Building Linear Regression Model
- Understanding model metrics (p-value, R-square / Adjusted R-square, etc.)
- Multicolinearity (VIF)
- Model Validation (MAPE, RMSE)
 
Case Study
- Introduction
- Assumptions (Linearity, Heteroskedasticity, Multivariate Normality, etc.)
- Data Preparation (Outlier Treatment, Missing Value Imputation)
- Building Linear Regression Model
- Understanding model metrics (p-value, R-square / Adjusted R-square, etc.)
- Multicolinearity (VIF)
- Model Validation (MAPE, RMSE)
 
Case Study
- Introduction
- Linear Regression vs. Logistic Regression
- Data Preparation (Outlier Treatment, Missing Value Imputation, Dummy Variable Creation)
- Building Logistic Regression Model
- Understanding model metrics (p-value)
- Multicolinearity (VIF)
- Model Validation (Confusion Matrix, ROC Curve, AUC, etc.)
 
Case Study
- Introduction
- Types
- Entropy, Gini Index, Chi-square
- Overfitting
- Pruning
- Cross Validation
 
Case Study
- Introduction
- Types
- Entropy, Gini Index, Chi-square
- Overfitting
- Pruning
- Cross Validation
 
Case Study
- Introduction
- Bagging
- Random Forest
- Boosting
- Gradient Boosting Machines (GBM)
 
Case Study
- Introduction
- Bagging
- Random Forest
- Boosting
- Gradient Boosting Machines (GBM)
 
Case Study
- Introduction
- Working of KNN
- Optimal Value of K
 
Case Study
- Introduction
- K-means Clustering
- Cluster Evaluation & Profiling
 
Case Study
- Introduction
- Curse of Dimensionality
- Process of working
 
Case Study
- Introduction
- Time Series Components: Trend, Seasonality, Cyclicity
- Smoothening Techniques: Moving Averages, Exponential
- ARIMA
- Accuracy
- Neural Prophet
 
Case Study
- Introduction
- Time Series Components: Trend, Seasonality, Cyclicity
- Smoothening Techniques: Moving Averages, Exponential
- ARIMA
- Accuracy
- Neural Prophet
 
Case Study
- Introduction
- Text pre-processing
- Noise Removal
- Lemmatization
- Stemming
- Feature Engineering on Text Data
- Bag of words
- TF-IDF
 
Case Study
- Introduction
- Text pre-processing
- Noise Removal
- Lemmatization
- Stemming
- Feature Engineering on Text Data
- Bag of words
- TF-IDF
 
Case Study
- Introduction
- Text pre-processing
- Noise Removal
- Lemmatization
- Stemming
- Feature Engineering on Text Data
- Bag of words
- TF-IDF
 
Case Study
- Introduction: Deep Learning
- Deep Learning vs. Machine Learning
- Neural Networks
- Activation Functions, hidden layers, hidden units
- Backpropagation
- Vanishing Gradient Problem
- Exploding Gradient Problem
- Perceptron & Multi-layer Perceptron
- CNN
- RNN
 
Case Study
- Introduction: Deep Learning
- Deep Learning vs. Machine Learning
- Neural Networks
- Activation Functions, hidden layers, hidden units
- Backpropagation
- Vanishing Gradient Problem
- Exploding Gradient Problem
- Perceptron & Multi-layer Perceptron
- CNN
- RNN
 
Case Study
- Introduction: Deep Learning
- Deep Learning vs. Machine Learning
- Neural Networks
- Activation Functions, hidden layers, hidden units
- Backpropagation
- Vanishing Gradient Problem
- Exploding Gradient Problem
- Perceptron & Multi-layer Perceptron
- CNN
- RNN
 
Case Study
- Introduction
- Connection to Data Sources
- Power Query Editor
- Views: Report, Data, and Relationships
- Data Modeling
- DAX
- DAX Queries: Calculated Columns & Calculated Measures
- Data Visualization Charts
- Slicers
- Dashboard
 
Case Study
- Introduction
- Connection to Data Sources
- Power Query Editor
- Views: ReportData, and Relationships
- Data Modeling
- DAX
- DAX Queries: Calculated Columns & Calculated Measures
- Data Visualization Charts
- Slicers
- Dashboard
 
Case Study
- Introduction
- Connection to Data Sources
- Power Query Editor
- Views: ReportData, and Relationships
- Data Modeling
- DAX
- DAX Queries: Calculated Columns & Calculated Measures
- Data Visualization Charts
- Slicers
- Dashboard
 
Case Study
- Introduction
- Connection to Data Sources
- Power Query Editor
- Views: ReportData, and Relationships
- Data Modeling
- DAX
- DAX Queries: Calculated Columns & Calculated Measures
- Data Visualization Charts
- Slicers
- Dashboard
 
Case Study
- Introduction
- Connection to Data Sources
- Power Query Editor
- Views: ReportData, and Relationships
- Data Modeling
- DAX
- DAX Queries: Calculated Columns & Calculated Measures
- Data Visualization Charts
- Slicers
- Dashboard
 
Case Study
- Introduction
- Connection to Data Sources
- Power Query Editor
- Views: ReportData, and Relationships
- Data Modeling
- DAX
- DAX Queries: Calculated Columns & Calculated Measures
- Data Visualization Charts
- Slicers
- Dashboard
 
Case Study
- Introduction
- Large Language Models (LLM) - GPT
- Transformer Architecture
- Prompt Engineering
- Configuration
- LangChain Framework
 
Use Cases
 
- Introduction
- Large Language Models (LLM) - GPT
- Transformer Architecture
- Prompt Engineering
- Configuration
- LangChain Framework
 
Use Cases
- Introduction
- Large Language Models (LLM) - GPT
- Transformer Architecture
- Prompt Engineering
- Configuration
- LangChain Framework
 
Use Cases
- Introduction
- Large Language Models (LLM) - GPT
- Transformer Architecture
- Prompt Engineering
- Configuration
- LangChain Framework
 
Use Cases
- Introduction
- Large Language Models (LLM) - GPT
- Transformer Architecture
- Prompt Engineering
- Configuration
- LangChain Framework
 
Use Cases
- Introduction
- Large Language Models (LLM) - GPT
- Transformer Architecture
- Prompt Engineering
- Configuration
- LangChain Framework
 
Use Cases
- Introduction
- Large Language Models (LLM) - GPT
- Transformer Architecture
- Prompt Engineering
- Configuration
- LangChain Framework
 
Use Cases