Register Now and enjoy 25% off on your first 5 courses (Published Courses & Group / Batch Classes)
Module 1: Python Basics: It will help learn the tool, Python to be used for working with data
· Introduction to Python
· OOP: Object & Class
· Serialization: Pickle Library
· Variables
· Lists
· Tuples
· Dictionary
· Sets
· List and Dictionary Comprehensions
· Conditional Statements (If, If-else, elif)
· Loops (For, While)
· Functions
· Lambda Function
· Apply Function
Class Exercises
Module 2: Python NUMPY Library: It is used to perform a wide variety of mathematical operations on arrays
· Array Characteristics
· Array Creation (arrange, linspace, flatten)
· Array Indexing (Slicing)
· Array Manipulation
· Reshape
· Concatenate
· Append
· Insert
· Delete
· Transpose
Class Exercises
Module 3: Python PANDAS Library: It is used for data manipulation, data cleaning, data analysis
· Series
· Data Frames
· Reading csv file
· Sub setting / Filtering / Slicing Data
· Dropping rows & columns
· Adding/Deleting columns
· Binning
· Renaming columns or rows
· Sorting
· Data type conversions
· Handling duplicates /missing
· Broadcasting
· Group by Function
· Map Function
· Visualization (bar graph, histogram, box plot)
· Merging (Inner, Left, Right, Outer)
· EDA
Class Exercises
Module 4: Python MATPLOTLIB Library: Data Visualization part 1
· Bar Plot
· Stacked Bar Plot
· Histogram
· Line Chart
· Box plot
· Pie-Chart
Class Exercises
Module 5: Python SEABORN Library: Data Visualization part 2
· Bar Plot
· Histogram
· Pairwise Plots: Joint Plot, Pair Plot
· Categorical Scatter Plot: Strip-plot, Swarm-plot
· Box-Plot
· Violin Plot
· Cat Plot
· Facet Grid
· Pair Grid
· Line Plot
Class Exercises
Module 6: Basic Statistics: For business analysis
· Type of Data
· Statistics
· Type of Statistics
· Descriptive Statistics
· Mean, Median, Mode (Measures of Central Tendency)
· Standard Deviation, Variance (Measures of Dispersion)
· Normal Distribution
· Standard Normal Distribution
· Standard Error
· Sampling
· Probability
Class Exercises
Module 7: Advance Statistics: For business analysis
· Confidence Interval
· T-Test & Z-Test
· P-value
· Hypothesis Testing
· Type I Error & Type II Error
· Chi-Square Test
· ANOVA
· Covariance
· Correlation
Class Exercises
Module 8: Machine Learning
· Supervised
· Unsupervised
Module 9: Supervised Machine Learning: Linear Regression (Solve business problems where we have to predict a value)
· Introduction
· Assumptions (Linearity, Heteroskedasticity, Multivariate Normality, etc.)
· Data Preparation (Outlier Treatment, Missing Value Imputation)
· Building Linear Regression Model
· Understanding model metrics (p-value, R-square/Adjusted R-square etc.)
· Multicollinearity (VIF)
· Model Validation (MAPE, RMSE)
Case study
Module 10: Supervised Machine Learning: Logistic Regression (Used for binary classification business problems)
· Introduction
· Linear Regression Vs. Logistic Regression
· Data Preparation (Outlier Treatment, Missing Value Imputation, Dummy Variable Creation)
· Building Logistic Regression Model
· Understanding model metrics (p-value)
· Multicollinearity (VIF)
· Model Validation (Confusion Matrix, ROC curve, AUC, etc.)
Case study
Module 11: Supervised Machine Learning: Decision Tress (Used for multi-class classification business problems & regression business problems)
· Introduction
· Types
· Entropy, Gini Index, Chi-Square
· Overfitting
· Pruning
· Cross – Validation
Case study
Module 12: Supervised Machine Learning: Ensemble (Used for multi-class classification business problems & regression business problems)
· Introduction
· Bagging
o Random forest
· Boosting
o Gradient Boosting Machines (GBM)
Case study
Module 13: Supervised Machine Learning: KNN (Used for multi-class classification business problems & regression business problems)
· Introduction
· Working of KNN
· Optimal value of K
Case study
Module 14: Unsupervised Machine Learning: Clustering (Used for segmenting data points into different groups)
· Introduction
· K -Means Clustering
· Cluster Evaluation and Profiling
Case study
Module 15: Unsupervised Machine Learning: PCA (Used for segmenting data points into different groups)
· Introduction
· Curse of dimensionality
· Process of working
Case study
Module 16: Unsupervised Machine Learning: Isolation Forest (Used for anomaly detection business problems)
· Introduction
· Contamination Factor
Case study
Module 17: Time Series Forecasting: Used for inventory planning or forecasting business problems
· Introduction
· Time Series Components: Trend, Seasonality, Cyclicity
· Smoothening Techniques– Moving Averages, Exponential
· ARIMA
· Accuracy
Case study
Module 18: Text Analytics: Used for text mining business problems working with unstructured data
· Introduction
· Text Pre-processing
o Noise Removal
o Lemmatization
o Stemming
o Feature Engineering on Text Data
o Bag of words
o TF-IDF
Case study
Module 19: AI: Deep Learning, Keras
· Introduction: Deep Learning
· Deep Learning vs Machine learning
· Neural Networks
· Activation Functions, hidden layers, hidden units
· Backpropagation
· Vanishing Gradient Problem
· Exploding Gradient Problem
· Perceptron & Multi-layer Perceptron
Case study
Module 20: Model Deployment: Using model for predicting output on new input values
· Flask
Case study
Senior Manager-Data Science, Freelance Data Science Trainer (R,SAS,PYTHON,ML,NLP,AI)(3000+ individuals), Mentor
Click for more0 Rating
can we get recorded class because that time i am not available and we get materials of every class
- Sunil Behera
· Introduction to Python
· OOP: Object & Class
· Variables
· Lists
· Tuples
· Dictionary
· Sets
· List and Dictionary Comprehensions
· Conditional Statements (If, If-else, elif)
· Loops (For, While)
· Functions
· Lambda Function
· Apply Function
Class Exercises
· Array Characteristics
· Array Creation (arrange, linspace, flatten)
· Array Indexing (Slicing)
· Array Manipulation
· Reshape
· Concatenate
· Append
· Insert
· Delete
· Transpose
Class Exercises
· Series
· Data Frames
· Reading csv file
· Sub setting / Filtering / Slicing Data
· Dropping rows & columns
· Adding/Deleting columns
· Binning
· Renaming columns or rows
· Sorting
· Data type conversions
· Handling duplicates /missing
· Broadcasting
· Group by Function
· Map Function
· Visualization (bar graph, histogram, box plot)
· Merging (Inner, Left, Right, Outer)
· EDA
Class Exercises
· Bar Plot
· Stacked Bar Plot
· Histogram
· Line Chart
· Box plot
· Pie-Chart
Class Exercises
· Bar Plot
· Histogram
· Pairwise Plots: Joint Plot, Pair Plot
· Categorical Scatter Plot: Strip-plot, Swarm-plot
· Box-Plot
· Violin Plot
· Cat Plot
· Facet Grid
· Pair Grid
· Line Plot
Class Exercises
· Type of Data
· Statistics
· Type of Statistics
· Descriptive Statistics
· Mean, Median, Mode (Measures of Central Tendency)
· Standard Deviation, Variance (Measures of Dispersion)
· Normal Distribution
· Standard Normal Distribution
· Standard Error
· Sampling
· Probability
Class Exercises
· Confidence Interval
· T-Test & Z-Test
· P-value
· Hypothesis Testing
· Type I Error & Type II Error
· Chi-Square Test
· ANOVA
· Covariance
· Correlation
Class Exercises
· Introduction
· Assumptions (Linearity, Heteroskedasticity, Multivariate Normality, etc.)
· Data Preparation (Outlier Treatment, Missing Value Imputation)
· Building Linear Regression Model
· Understanding model metrics (p-value, R-square/Adjusted R-square etc.)
· Multicollinearity (VIF)
· Model Validation (MAPE, RMSE)
Case study
· Introduction
· Assumptions (Linearity, Heteroskedasticity, Multivariate Normality, etc.)
· Data Preparation (Outlier Treatment, Missing Value Imputation)
· Building Linear Regression Model
· Understanding model metrics (p-value, R-square/Adjusted R-square etc.)
· Multicollinearity (VIF)
· Model Validation (MAPE, RMSE)
Case study
· Introduction
· Linear Regression Vs. Logistic Regression
· Data Preparation (Outlier Treatment, Missing Value Imputation, Dummy Variable Creation)
· Building Logistic Regression Model
· Understanding model metrics (p-value)
· Multicollinearity (VIF)
· Model Validation (Confusion Matrix, ROC curve, AUC, etc.)
Case study
· Introduction
· Linear Regression Vs. Logistic Regression
· Data Preparation (Outlier Treatment, Missing Value Imputation, Dummy Variable Creation)
· Building Logistic Regression Model
· Understanding model metrics (p-value)
· Multicollinearity (VIF)
· Model Validation (Confusion Matrix, ROC curve, AUC, etc.)
Case study
· Introduction
· Types
· Entropy, Gini Index, Chi-Square
· Overfitting
· Pruning
· Cross – Validation
Case study
· Introduction
· Bagging
o Random forest
· Boosting
o Gradient Boosting Machines (GBM)
Case study
· Introduction
· Working of KNN
· Optimal value of K
Case study
· Introduction
· K -Means Clustering
· Cluster Evaluation and Profiling
Case study
· Introduction
· Curse of dimensionality
· Process of working
Case study
· Introduction
· Contamination Factor
Case study
· Introduction
· Time Series Components: Trend, Seasonality, Cyclicity
· Smoothening Techniques– Moving Averages, Exponential
· ARIMA
· Accuracy
Case study
· Introduction
· Text Pre-processing
o Noise Removal
o Lemmatization
o Stemming
o Feature Engineering on Text Data
o Bag of words
o TF-IDF
Case study
· Introduction: Deep Learning
· Deep Learning vs Machine learning
· Neural Networks
· Activation Functions, hidden layers, hidden units
· Backpropagation
· Vanishing Gradient Problem
· Exploding Gradient Problem
· Perceptron & Multi-layer Perceptron
Case study
· Introduction: Deep Learning
· Deep Learning vs Machine learning
· Neural Networks
· Activation Functions, hidden layers, hidden units
· Backpropagation
· Vanishing Gradient Problem
· Exploding Gradient Problem
· Perceptron & Multi-layer Perceptron
Case study
· Flask
Case study